Vertical Flow Sensors

FV4 Series

- Senses increasing or decreasing flow in gas systems
- Actuates an electrical switch at a predetermined flow range
- Welded 316L SS construction
- Working pressures up to 5000 psig (344 bar)

Materials of Construction

Component	Material Grade/ ASTM Specification	
1 Body		
2 Float guide	316L SS/A479	
3 Float		
4 Magnet	Samarium cobalt	
5 Retaining ring	300 stainless steel	
6 Capsule	Plastic	
7 Reed switch	Mixed, including epoxy sealant	

Wetted components listed in italics.

Reed Switch				
Туре				
Single-pole, double-throw, 3-wire/2-position				
Contact Rating				
Power Voltage Switching current Initial contact resistance	3 W max 100 V (dc) max 250 mA max 0.200 Ω max			
Cable Leads				
Wire Jacket Length White Red Black	22 AWG, 7/30, 80°C, 300 V PVC 36 in. (91.4 cm) Common Normally closed Normally open			

Features

- Models can be selected to sense either increasing flow or decreasing flow.
- Snap-action float provides positive actuation.
- All-welded construction ensures fluid containment.
- High-strength, permanent magnet and 316L SS materials enhance durability.
- Replaceable switch assembly outside flow path eases maintenance.

Operation

Technical Data

Pressure-Temperature Ratings

Material	316L SS	
Temperature °F (°C)	Working Pressure psig (bar)	
-40 (-40) to 100 (37) 175 (79)		

Flow Coefficient-0.5

Outlet

Inlet

Red

lead

Common

reed

The Swagelok FV4 series flow sensor contains a float with a calibrated orifice that moves up or down in the float guide as flow increases or decreases. A magnet encased in the float above the orifice alternates electrical continuity between the **black** and the **red** leads of the adjacent reed switch.

Increasing Flow—Float Down

Float

guide

Float

Calibrated

orifice

During normal flow, the float is *down* at the bottom of the sensor body and electrical continuity is through the **red** lead of the switch.

When flow **increases** to within the actuation range:

- differential pressure across the float orifice snaps the float up to the top of the float guide
- continuity switches to the **black** lead.
- As flow returns to normal:
- the float drops down to the bottom of the sensor body
- the magnet draws the common reed to the red lead
- continuity switches to the **red** lead.

Decreasing Flow—Float Up

During normal flow, the float is *up* at the top of the float guide and electrical continuity is through the **black** lead of the switch.

When flow **decreases** below the actuation range:

- the float drops down to the bottom of the sensor body
- the magnet draws the common reed to the red lead
- continuity switches to the **red** lead.
- As flow returns to normal:
- differential pressure across the float orifice snaps the float up to the top of the float guide
- continuity switches to the black lead.

Flow, Sizing, and Selection

Sizing to Sense Increasing Flow

Size the float to actuate the switch after flow **exceeds** the maximum rate.

Increasing Flow

Example:

Nitrogen process gas

8 std L/min maximum system flow rate

100 psig (6.8 bar) system pressure

- 1. Using the **Increasing Flow** graph, find the intersection of the system pressure (100 psig [6.8 bar]) and the maximum system flow rate (8 std L/min). ▲
- 2. Locate the range directly **above** the intersection point (Range **C**).
- 3. Insert C into the sensor ordering number.

Example: 6L-FV4C-S4

Cleaning and Packaging

All FV4 series flow sensors are are processed in accordance with *Swagelok Special Cleaning and Packaging (SC-11),* <u>MS-06-63</u>, to ensure compliance with product cleanliness requirements stated in ASTM G93 Level C.

Testing

Every FV4 series flow sensor is tested for proper operation and is helium leak tested at the envelope to a maximum leak rate of 4 \times 10⁻⁹ std cm³/s.

Installation

The FV4 series flow sensor must be installed in a vertical orientation with the arrow pointing up.

Sizing to Sense Decreasing Flow

Size the float to actuate the switch before flow **drops below** the minimum rate.

Decreasing Flow

Example:

Nitrogen process gas

10 std L/min normal system flow rate

4 std L/min minimum system flow rate

20 psig (1.3 bar) system pressure

- 1. Using the **Decreasing Flow** graph, find the intersection of the system pressure (20 psig [1.3 bar]) and the minimum system flow rate (4 std L/min). ◆
- 2. Locate the range directly **above** the intersection point (Range **C**).
- 3. Using the **Increasing Flow** graph, find the intersection of the system pressure (20 psig [1.3 bar]) and the normal system flow rate (10 std L/min). Verify that the range identified in Step 2 (Range **C**) is below the intersection point.
- 4. Insert **C** into the sensor ordering number.

Example: 6L-FV4C-T4A

Sizing for Other Gases

To size the float for gases other than **nitrogen**, multiply the process gas flow rate by the density correction factor (F_d) to obtain equivalent nitrogen flow rates.

$$F_d = \sqrt{\frac{MW_{\text{process}}}{28}}$$

Proceed with sizing as described above. MW_{process} = molecular weight of process gas. 3

Ordering Information and Dimensions

Dimensions, in inches and (millimeters), are for reference only and are subject to change.

For a complete ordering number, insert the actuation range designator **A**, **B**, **C**, or **D** (see graphs on page 3) into the basic ordering number.

Example: 6L-FV4A-S4

End Connections		Basic Ordering	Dimensions in. (mm)	
Туре	Size	Number	н	J
Swagelok tube fittings	1/4 in.	6L-FV4S4	3.68 (93.4)	9/16
Male VCR® fittings	1/4 in.	6L-FV4VR4	3.10	_
Female to male VCR fitting	1/4 in.	6L-FV4FR4-VR4	(78.7)	3/4
Tube extensions	1/4 $ imes$ 0.035 in.	6L-FV4T4A	3.19 (81.0)	_

Accessories

Reed Switch Kit

Replacement switch kit includes switch assembly, retaining ring, assembly tool, and assembly instructions.

Ordering number: MS-SRK-FV4

Oxygen Service Hazards

For more information about hazards and risks of oxygenenriched systems, see the Swagelok *Oxygen System Safety* technical report, <u>MS-06-13</u>.

Safe Product Selection

When selecting a product, the total system design must be considered to ensure safe, trouble-free performance. Function, material compatibility, adequate ratings, proper installation, operation, and maintenance are the responsibilities of the system designer and user.

Do not mix/interchange Swagelok products or components not governed by industrial design standards, including Swagelok tube fitting end connections, with those of other manufacturers.

Warranty Information

Swagelok products are backed by The Swagelok Limited Lifetime Warranty. For a copy, visit swagelok.com or contact your authorized Swagelok representative.