Safe Valve Selection

CI SMª

Valve Function

1. On-Off

2. Flow control

3. Directional flow

4. Over-pressure protection

Common Terms

• <u>Flow</u>: to move in a steady or continuous way

Downstream Fluid Outlet

Common Valve Types

Construction - Material

Flow Coefficient (C_v)

- Valves permit flow based primarily on factors including diameter of end connection and the valve's flow path.
- To help you understand a valve's ability to allow flow, manufacturers provide a flow coefficient, or C_v, for their valves. This will help you select the right valve for your fluid system.
- A higher C_v means a higher flow rate. Depending upon the valve type and application, you may see a C_v near 0.
- The definition of C_v is the # of gallons of water that will flow through the valve with a 1 PSI pressure differential when the valve is open.

Valve Function On-Off

- Purpose
 - Stop fluid flow
 - Re-start fluid flow
- Types
 - Ball
 - Diaphragm
 - Gate
 - Plug
 - Other

On-Off: Ball

C

On-Off: Diaphragm

On-Off: Gate

© 2018 Swagelok Company

Start

On-Off: Plug

© 2009 Swagelok Company © 2018 Swagelok Company

Valve Function Flow Control

- Purpose
 - Regulate flow
- Types
 - Needle
 - Regulating
 - Fine metering

Flow Control: Regulating

Flow Control: Fine Metering

Valve Function Directional Flow

- Purpose
 - Ensure fluid flow in one direction only
- Types - Check - Multi-port ball

Directional Flow: Check

Understanding Crack and Reseal

Nominal Cracking Pressure: The average pressure differential required to open the check valve

Cracking Pressure Range: The maximum (and minimum) upstream pressure required to open

Reseal Pressure: The maximum downstream or upstream pressure required to create a seal

Design Considerations

- Operation
 - Spring check (A)
 - Lift check (B)
 - Swing check

- Closure type
 - Ball (C)
 - Poppet (D)

- Adjustability
 - Some check valves will come preset from the factory. Select a style that permits adjustments if your system will require fine tuning.

Directional Flow: Multi-Port Ball

S

Valve Function Overpressure Protection

- Purpose
 - Relieve system pressure
- Types
 - Relief
 - Proportional
 - · Safety

Overpressure Protection: Proportional Relief

Crack

Overpressure Protection: Safety Relief

Start

Check Valves vs. Relief Valves

Check Valves

- Designed to stay **open**
- Close quickly to prevent flow in opposite direction
- Crack at low enough pressures to open a system

Relief Valves

- Designed to typically be closed and open at a certain set pressure
- Most close once pressure drops as the product is bled

Valve Function Excess Flow Protection

- Purpose:
 - Contains uncontrolled release of system media
- Types
 - Excess flow

Excess Flow Protection: Excess Flow Valve

S

Excess Flow Protection Valve Summary

Valve Leakage

Valves can leak in one of two locations:

Seat: leak is contained inside the valve, but fluid passes through the seal and the valve is unable to stop the flow

Shell: fluid leaks outside of the valve into the atmosphere (an outboard leak). Could be through the stem or body of the valve.

Seal Considerations

When selecting a valve, consider:

- Ability to adjust a valve in the field
- Ability for the valve to self-adjust to wear and temperature

Valve Maintenance & Troubleshooting

- Test
 - Verify valve operation
- Inspect
 - Examine components
 - Seats
 - O-rings
 - Stem tips
- Maintain
 - Replace components based on test/inspection results

- Overhaul
 - Replace all internal wear components
- Replace
 - Remove current valve
 - Install new valve

Selection Process

- What do you want the valve to do?
 - On-Off
 - Flow control
 - Directional flow
 - Over-pressure protection
 - Excess-flow protection
- What are your applications and system parameters?
- How should the valve be constructed?
- What actuation method is required?
- Does it meet code or specification?
- How will the valve be installed and maintained?

Selection Process System Parameters

- Pressure
- Temperature
- Media
- Flow
- Environment

System Parameters

- Pressure and Temperature
 - Select a valve that is within the pressure and temperature rating
 - Caution: A valve rated to 6000 psig (413 bar) at ambient temperature may be de-rated at elevated temperature.

ASME Class	2500			
Material Group	2.2	3.4	3.1	3.5
Material Name	316 SS	Alloy 400	Alloy 20	Alloy 600
Temperature, °F (°C)	Working Pressure, psig (bar)			
-65 (-53) to 100 (37) 200 (93) 250 (121) 300 (148) 350 (176)	6000 (413) 5160 (355) 4910 (338) 4660 (321) 4470 (307)	5000 (344) 4400 (303) 4260 (293) 4120 (283) 4050 (279)	5000 (344) 4640 (319) 4500 (310) 4360 (300) 4185 (288)	6000 (413) 5600 (385) 5460 (376) 5320 (366) 5220 (359)
400 (204) 450 (232) 500 (260) 600 (315)	4280 (294) 4130 (284) 3980 (274) 3760 (259)	3980 (274) 3970 (273) 3960 (272) —	4010 (276) 3955 (272) 3900 (268) 3790 (261)	5120 (352) 5030 (346) 4940 (340) 4780 (329)

Materials of Construction

Valve Body:	Internal component:		
Typically, valve bodies are made of	Seats and seals are typically made of		
metal or plastic. Examples of	softer materials. Examples of		
common body materials include:	common material types include:		
 Stainless steel Brass Bronze Chrome Titanium PVC CPVC PFA-lined 	 Reinforced Teflon (RTFE) Kel F (PCTFE) Nylon PEEK Virgin Teflon (TFE) Graphoil Viton 		

Wire Draw Stem Tip

Seat Wire Draw

Erosion

Erosion

System Contamination

Throttling (Partial Actuation)

Incompatibility with System Media

Wear

Filters

- Filters help remove particulate from your fluid or gas system. Depending upon its size and molecular structure, particles can cause serious damage to valve seats, contaminate your process fluid causing poor samples, and reduce overall flow through your system.
- Filters come in many varieties and sizes based on your need.
 - Can be cleanable
 - Can be replaceable

Why Have a Filter

Why Filters Are Important

Construction: Configuration / Pattern

- Straight
- Angle
- Cross
- Globe
- Multi-port

Construction – End Connections

- Swagelok® tube fitting
- Pipe threads
- Pipe flange
- Zero-clearance
- Weld

Join Us for Our Next Tech Talk

Hose Routing and Installation

• Wednesday, January 20th

