Pressure Measurement

Analog gauges

Where are gauges?

- Medical breathing air
- Sprinkler systems
- Hydraulics
- Bottle regulators
- Process lines
- Food and beverage manufacturing
- **Where else?**

Open Discussion

What Causes Gauges To Fail?

What Causes Gauges to Fail?

- Mechanical vibration
- Pulsation/Spikes/Overpressure
- Temperature
- Corrosion
- Clogging
- Mishandling/abuse

Mechanical Vibration

Failure – Mechanical Vibration

- Caused by vibrating equipment near the gauge
- Usually occurs from pumps or similar type of reciprocating equipment
- Increases wear on movement & internal components
- Difficult to read pressure due to gauge vibration
- Similar to premature failure caused by pulsation

Failure – Mechanical Vibration

Worn Pinion Gear

Worn Segment Gear

Failure – Mechanical Vibration

Failure – Mechanical Vibration

- Pointer has fallen off due to severe vibration
- Dust on inside of window from wear of internal components

Mechanical Vibration = Solution

Solution – Vibration

- Liquid-filled gauge dampens vibration to movement, Bourdon tube and internal components. Lubricates moving parts and eliminates or reduces resonant frequency.
- Available case fills are Glycerine, Silicone, Halocarbon and Fluorolube

Pulsation

Failure – Pulsation

- Caused by media rapidly cycling the gauge
- Increases wear on components and Bourdon tube
- Difficult to read pressure due to pointer flutter
- If the pointer pulsation increments are greater than 5% of full scale value, you must intervene to prevent damage to the gauge.
- Types of pulsation
 - Centrifugal high frequency, low amplitude; causes extreme pointer movement, usually contained to small pressure increments
 - Reciprocating low frequency, high amplitude; causes rapid pointer movement, may fluctuate over larger pressure increments

Failure – Dynamic (cyclic) Load From Pulsation

Bourdon Tube Split

Magnified Cross Section

Pulsation = Solution

Solutions – Pulsation

- Socket restrictor Allows pressure to equalize slowly. Economical and low cost solution
- Liquid filled case Dampens pulsation. Lubricates and cools moving parts

Solutions – Pulsation

Adjustable Snubber

Solutions – Pulsation

- A liquid-filled case and a restrictor will resolve most pulsation problems, but extreme pulsation requires accessories.
- Needle valves and gauge cocks can be used to throttle down pressure pulsations.

Spikes and Overpressure

Failure – Spikes and Overpressure

- In general, an overpressure failure is caused by the application of a pressure greater than the rated capacity of the measuring element.
- In some cases ultra fast (*msec*) pressure increases can cause the pressure element to fail well before its "rated" rupture pressure.

Bourdon Tube Failure – Spikes and Overpressure

Bourdon Tube Warped & Split

Spikes and Overpressure = Solution

Solutions – Spikes and Overpressure

- At a predetermined pressure, the overpressure protector "shuts-off" pressure to the gauge, preventing damage to the sensing element and protecting the calibration.
- The set-point is externally adjustable. WIKA overpressure protectors also feature a piston valve which is designed to dampen system pulsation.

Temperature Extremes

Failure – Temperature

Ambient temperatures are just as important as process media temperatures

Temperature Extremes = Solution

Solutions – Temperature

- Ensure that ambient and media temperatures are within allowable temperature limits of the gauge
- Excessive temperature applications may require the use of accessories or diaphragm seal solutions
- In addition to stainless steel gauge:
 - Long pipe (6" to 12")
 - Siphon
 - Cooling element
 - Cooling tower
 - Capillary
 - Diaphragm seal

Solutions – Temperature

Solutions – Temperature

Process gauge with AWS

Process gauge with AWS and cooling element

Solutions – Temperature- Steam

- Prevent steam and "water hammer" from reaching gauge internals
- Must be filled with water upon installation
- Actual temperature reduction is a function of process pressure

Coil – For Horizontal Applications

Pigtail – For Vertical

Corrosion

Failure – Corrosion

Corrosion failure from media attacking the wetted parts material of the pressure gauge

Holes in Bourdon tube

Holes in Bourdon tube

Failure – Corrosion

 Corrosion failure not only occurs from media attacking the wetted parts, but also from corrosives in the environment attacking the case, window and gauge internals.

Corroded Dial

Fogged Window

Corrosion = Solution

Solution – Corrosion

- Ensure that the wetted parts material, case material and internals of the gauge are compatible to the process media and atmospheric conditions
- Excessively corrosive media applications may require the use of diaphragm seal solution

Clogging

Solution – Clogging

- Media does not have to be aggressive or hostile to require the use of diaphragm seals
- For Example: Chocolate when warm and molten it will flow. However, when cooled it will become a solid.

Clogging = Solution

Clogging Solution

 Clogging problems and highly viscous or clogging media may require the use of a diaphragm seal.

Mishandling and Abuse

Failure – Mishandling/Abuse

Cracked Case

Broken Window

Mishandling and Abuse = Solution

Solution-Mishandling

- Use the wrench flats to install the gauge do not tighten by grabbing the sides of the case and turning
- Most all gauges feature 4-sided wrench flats for easy installation
- Utilize protective cases

How to Specify a Pressure Gauge

- Size
- Temperature
- Application
- Media
- Pressure
- End Connection
- Delivery

Available Resources and Services for You

Gauge Catalogs

Onsite Surveys and Audits

Safe Valve Selection Wednesday, December 9th 11:30 am to 12:00 pm

