Swagelok[®] Pressure Regulators Pressure Reducing Regulators

Stem Fine-pitch threads enable precise spring adjustment with low torque.

Stop Plate

This disc provides positive backup to the diaphragm in case of diaphragm overpressure.

Convoluted Diaphragm

The all-metal diaphragm acts as the sensing mechanism between the inlet pressure and the range spring. The convoluted, nonperforated design ensures greater sensitivity and longer life. A piston sensing mechanism (shown below) can accommodate higher pressures.

Gauze Inlet Filter -

Regulators are susceptible to damage from system particles. Swagelok pressure-reducing regulators include a 25 µm filter held in the inlet port by a retaining ring. It can be removed easily for cleaning or to use the regulator in liquid service.

Range Spring

Turning the handle compresses the spring, pushing the poppet away from the seat and increasing outlet pressure.

Two-Piece Cap

The two-piece design provides linear load on the diaphragm seal when the cap ring is tightened, eliminating torque damage to the diaphragm during assembly.

Poppet Damper

The poppet damper keeps the poppet aligned and reduces vibration and resonance.

Venting Options

The self-vent option allows excess outlet pressure to vent through the body cap. This can occur when downstream flow is suddenly reduced or when the handle is adjusted to a lower pressure with little or no flow downstream. The captured-vent option includes a 1/8 in. female NPT connection and stem seal in the body cap[®] to allow monitoring of the diaphragm or piston sensing mechanism. It also allows containment of hazardous gas or liquid media should a diaphragm or piston rupture.

Self-vent and captured-vent options can be ordered together so that hazardous gas or liquid media can be contained if vented.

① The captured-vent port is in the bottom of the KHR series body.

Piston Sensing Mechanism

Piston sensing mechanisms typically are used to regulate higher pressures than a diaphragm can withstand. They are also more resistant to damage caused by pressure spikes and have a short stroke to maximize cycle life.

Fully-Contained Piston The piston is contained by a shoulder in the regulator body cap to prevent piston blowout if the regulator

outlet is overpressurized.

Swagelok Pressure Regulators

Pressure-Reducing:

Spring-Loaded

KPR Series

Compact design features a convoluted diphragm, providing a metal-to-metal seal to help ensure maximum accuracy, stability, and sensitivity.

KCY Series

Two-stage regulator is designed for applications that require constant outlet pressure when inlet pressures vary, such as cylinder gases

KLF Series

Low-flow regulator with a large convoluted diaphragm provides high sensitivity control with minimum droop.

KHF Series

High-flow (C_v 1.0) regulator provides minimum droop; the balanced poppet design provides pressure regulation accuracy of 0.2%

KCP Series Compact, spring-loaded

design features low internal volume

KPP Series

Compact lightweight design is used in liquid or gas applications with up to 6000 psig (413 bar) inlet pressures

KPF Series

KHP Series

KHR Series

KBP Series

KFB Series

High-pressure regulator

controls supply pressures

up to 10 000 psig (689 bar)

Hydraulic pressure regulator

operates in systems up to

10 000 psig (689 bar)

High flow (C_v 1.0) provides minimum droop across the flow range while mantaining outlet pressures up to 4000 psig (275 bar)

KPB Series

Compact, lightweight regulator provides backpressure control up to 4000 psig (275 bar)

KHB Series

High back-pressure regulator provides backpressure control up to 10 000 psig (689 bar)

Specialty: Gas Cylinder Changeover

KCM Series

Automatic gas cylinder changeover manifold helps reduce cost associated with system downtime and maintenance expense of continuously monitoring the supply of critical gases.

Vaporizing:

Pressure-Reducing

KEV Series

ATEX. IECEx and CSA certified for critical/ hazardous environments Inlet pressures up to 3600 psig (248 bar)

KSV Series

Steam heated with inlet pressures up to 3600 psig (248 bar); outlet pressures up to 500 psig (34.4 bar)

Swagelok

Back-Pressure: Spring-Loaded

> pressures up to 500 psig (34.4 bar)

High-sensitivity back-

High-sensitivity backpressure regulator maintains controlled pressures in a high-flow system (C_v up to 1.0)

KCB Series

Compact design offers high sensitivity